The hemopoietic growth factor, interleukin-3, promotes glucose transport by increasing the specific activity and maintaining the affinity for glucose of plasma membrane glucose transporters.
نویسندگان
چکیده
Most mammalian cells rely on an external supply of glucose for survival, proliferation, and function. Glucose enters cells through specific transporter molecules at the plasma membrane by a facilitative process that does not expend energy. Regulation of glucose transport into cells is thought to occur largely through transporter expression at the cell surface, but the extent to which the intrinsic properties of glucose transporters are regulated is at present controversial. Using a bone marrow-derived cell line that responds to the hemopoietic growth factor, interleukin-3 (IL-3), we investigated IL-3 regulation of glucose transport. IL-3 significantly increased 2-deoxyglucose (2-DOG) uptake within 1 h (26 +/- 8.0%, n = 11) with a maximum 73% increase after 6 h. Withdrawal of IL-3 resulted in decreased uptake within 1 h and this continued to decline to 43% of initial uptake by 16 h. To determine whether these changes in 2-DOG uptake were associated with corresponding changes in glucose transporter expression, subtype-specific antisera against Glut-1 and Glut-3 were used. Little change in membrane expression of these transporters was observed prior to 16 h. Fractionation of cell membranes on Nycodenz gradients showed that the majority of each transporter subtype was associated with the plasma membrane (63-93%) and that transporter distribution did not change markedly in response to addition or withdrawal of IL-3. These results demonstrate that IL-3 regulates glucose uptake by modulating the intrinsic transporting ability of glucose transporters. Decreased transporter affinity for 2-DOG and 3-O-methylglucose was observed following IL-3 withdrawal. Similar affinity changes were observed with 2-DOG following exposure of IL-3-stimulated cells to the protein kinase inhibitors, genistein and staurosporine. In contrast, the tyrosine phosphatase inhibitor, vanadate, acted like IL-3 to increase transporter affinity for glucose. Together these results demonstrate that IL-3 acts to maintain the intrinsic transport properties of glucose transporters without markedly affecting their expression or translocation.
منابع مشابه
Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst.
Activation of the respiratory burst imposes acute metabolic demands on phagocytic cells. These are met by mobilizing internal energy stores and by increasing the utilization of exogenous energy, including glucose in the circulation. To determine whether the increased glucose uptake that is known to be associated with the respiratory burst involves the regulation of glucose transporter molecules...
متن کاملEffect of Low–Level Helium-Neon Laser Irradiation on the Release of Interleukin 6 and Basic Fibroblast Growth Factor from Cultured Human Fibroblasts in High Glucose Medium
Purpose: Low level laser therapy is suggested as a new therapeutic method in diabetic wound healing. This survey aimed to evaluate the effects of low level laser on human fibroblasts cultured in high glucose cultures. Materials and Methods: The human skin fibroblasts were cultured under standard condition. The cells were cultured in high glucose culture medium (15mM/L) for a week and two weeks ...
متن کاملMechanism of mitogen-induced stimulation of glucose transport in human peripheral blood mononuclear cells. Evidence of an intracellular reserve pool of glucose carriers and their recruitment.
The present study examines the effects of phytohemagglutinin stimulation of a population of human (h) PBMC enriched in lymphocytes (hPBMC) on D-glucose displaceable cytochalasin B binding sites or medium-affinity sites (M-sites) in relation to glucose transport. Previously we have shown that M-sites are glucose transporters in hPBMC (Mookerjee, B.K., et al. 1981. J. Biol. Chem. 256:1290-1300). ...
متن کاملTrafficking of Glucose Transporters and Mechanisms Signals
The uptake of glucose into mammalian cells, catalysed by members of the GLUT family of glucose transporters, is regulated by a variety of hormones, growth factors and other agents. In adipocytes, skeletal muscle and heart the principal regulator is the hormone insulin, which rapidly stimulates glucose uptake by bringing about the translocation of the GLUT4 glucose transporter isoform from an in...
متن کاملBiochemical and functional characterization of the rat liver glucose-transport system. Comparisons with the adipocyte glucose-transport system.
The properties of the glucose-transport systems in rat adipocytes and hepatocytes were compared in cells prepared from the same animals. Hormones and other agents which cause a large stimulation of 3-O-methylglucose transport in adipocytes were without acute effect in hepatocytes. Hepatocytes displayed a lower affinity for 3-O-methylglucose (20 mM) and alternative substrates than adipocytes (6 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 28 شماره
صفحات -
تاریخ انتشار 1997